MCS IB Biology Year 1 Subject Group Overview – New Syllabus 23-24

<table>
<thead>
<tr>
<th>Unit Name</th>
<th>Cells</th>
<th>Molecular Biology: Structure and Function</th>
<th>Molecular Biology: Cell Energetics</th>
<th>Genetics</th>
<th>Equilibrium</th>
<th>Internal Assessments (IAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>S1 6 weeks</td>
<td>S1 5 weeks</td>
<td>S1 7 weeks</td>
<td>S2 8 weeks</td>
<td>S2 7 weeks</td>
<td>3 weeks</td>
</tr>
<tr>
<td>IB Topics Theme = Letter Level of Organization = #</td>
<td>A2.2, B2.1, B2.2, B2.3, D2.3</td>
<td>A1.1, A1.2, B1.1, B1.2</td>
<td>C1.1, C1.2, C1.3, D1.1, D1.2</td>
<td>D1.3, D2.1, D3.2</td>
<td>C3.1, D3.3</td>
<td>Internal assessments (IAs)</td>
</tr>
</tbody>
</table>

Content Specific Information (texts, documents, methods)

Statement of Inquiry:
- **All living things are composed of cells with similar structures and life cycles.**

Phenomenon: With sickle cell disease, an inherited group of disorders, red blood cells contort into a sickle shape. The cells die early, leaving a shortage of healthy red blood cells (sickle cell anemia), and can block blood flow causing pain (sickle cell crisis).

Crosscutting Concepts
- Structure and Function
- Interactions
- Stability and Change
- Patterns

CORE IDEAS
- Cellular Structure:

Statement of Inquiry:
- **Various Functions of a cell can be predicted through the complex structures of their molecules.**

Phenomenon: Sickle cell disease is caused by mutations in the beta-globin (HBB) gene that lead to the production of an abnormal version of a subunit of hemoglobin — the protein responsible for carrying oxygen in red blood cells.

Crosscutting Concepts
- Structure and Function
- Interactions
- Stability and Change

CORE IDEAS
- Properties of Water
- Organic Compounds
- Chemistry Basics
- Macromolecules:

Statement of Inquiry:
- **Research is continuously being conducted to find novel applications for enzymes that will promote human health and wellness.**

Phenomenon: The beta globin protein is one of the subunits of hemoglobin, a protein necessary for the oxygen-carrying function of red blood cells. People with the sickle cell mutation in both copies of the HBB gene produce proteins that clump together and lead to changes in the shape and behavior of red blood cells.

Crosscutting Concepts
- Structure and Function
- Systems and System models
- Patterns

CORE IDEAS
- Stability and Change
- Systems & System Models
- Cause and Effect

Statement of Inquiry:
- **Advancements in biotechnology supports complex research into the inheritance patterns and genetics of all living things.**

Phenomenon: The causes and effects of sickle cell anemia – A base substitution mutation drives significant phenotypic change in humans.

Crosscutting Concepts
- Structure and Function
- Systems and System models
- Patterns

CORE IDEAS
- Genetics: Mutations/Variation
- Cell Division: Mitosis/Meiosis/Cytokinesis
- Down

Statement of Inquiry:
- **In recent years, the basic biochemical unity of all plants, fungi, animals, and microbes has become increasingly apparent.**

Phenomenon: The correction of anemia in Sickle Cell Disease requires careful balancing of the detrimental effects of anemia with the potential risks associated with increased blood viscosity.

Crosscutting Concepts
- Systems and System models
- Patterns
- Stability and Change
- Interactions and Equilibrium

CORE IDEAS:
- What is the IA?
- Academic Integrity Policy
- Rubrics

Themes: A = Unity & Diversity, B = Form & Function, C = Interaction & Interdependence, D = Continuity & Change

Level of Organization: 1 = Molecules, 2 = Cells, 3 = Organisms, 4 = Ecosystems

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
MCS IB Biology Year 1 Subject Group Overview – New Syllabus 23-24

<table>
<thead>
<tr>
<th>Unit Name</th>
<th>Cells</th>
<th>Molecular Biology: Structure and Function</th>
<th>Molecular Biology: Cell Energetics</th>
<th>Genetics</th>
<th>Equilibrium</th>
<th>Internal Assessments (IAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prokaryotic / Eukaryotic Cells/Animal/Plant Cells - Functions of Life</td>
<td>● Membrane and Membrane Transport ● Organelles and Compartmentalization ● Cell Specialization ● Water Potential</td>
<td>● Nucleic Acids ● Carbohydrates ● Lipids ● Proteins</td>
<td>● Patterns</td>
<td>Syndrome/Non-Disjunction ● Inheritance: Patterns ● Haploid/Diploid ● Phagocyte/Genotype ● Phenylketonuria (PKU) ● Single Nucleotide Polymorphisms (SNPs) ● ABO Blood Groups ● Incomplete ● Codominance ● Sex determination ● Sex Linked Traits ● Continuous inheritance due to Polygenic inheritance or environmental factors</td>
<td>CORE IDEAS ● Integration of Body Systems ● Levels of organization ● Nervous System ● Endocrine System ● Brain ● Sleep ● Hormones ● Feedback mechanisms ● Peristalsis ● Homeostasis ● Regulation of Blood Glucose ● Type 1 & 2 Diabetes ● Thermoregulation</td>
<td>Developing a research question Variable Identification Methodology for individual or collaborative work Research design Data Analysis Statistics Conclusion Evaluation *Will go over all parts of the IA and assign the design proposal only in Y1.</td>
</tr>
</tbody>
</table>

SEP
- Asking Questions and Defining Problems
- Developing & Using Models
- Constructing Explanations
- Carrying out Investigations

- Asking Questions and Defining Problems
- Developing & Using Models
- Constructing Explanations
- Engage in Argument from Evidence

- Asking Questions and Defining Problems
- Developing & Using Models
- Constructing Explanations
- Engage in Argument from Evidence

- Asking Questions and Defining Problems
- Carry out Investigations.
- Engage in Argument from Evidence

- Asking Questions
- Defining Problems
- Develop & Use Models
- Engage in Argument from Evidence

Published: August, 2023
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
<table>
<thead>
<tr>
<th>Assessments / Major Projects</th>
<th>Cells</th>
<th>Molecular Biology: Structure and Function</th>
<th>Molecular Biology: Cell Energetics</th>
<th>Genetics</th>
<th>Equilibrium</th>
<th>Internal Assessments (IAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Formative and Summative assessment(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IA proposal</td>
</tr>
<tr>
<td>Applications of Skills: Microscopy Skills (A2.2):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Research Question</td>
</tr>
<tr>
<td>▪ Slide preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables</td>
</tr>
<tr>
<td>▪ Staining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Research</td>
</tr>
<tr>
<td>▪ Measuring sizes using an eyepiece graticule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Materials</td>
</tr>
<tr>
<td>▪ Focusing using fine and course adjustments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods</td>
</tr>
<tr>
<td>▪ Calculating actual size and magnification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Safety</td>
</tr>
<tr>
<td>▪ Producing a scale bar and taking photographs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practice IB Exam questions: Papers 1 and 2</td>
</tr>
<tr>
<td>▪ Identify cell types and structures in light and electron micrographs (A2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Draw and annotate (functions) diagrams of organelles and cellular structures based on electron micrographs (A2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Cell Membrane Modeling and Transport Lab (B2.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Surface Area to Volume Ratios/Cell Size Modeling (B2.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Unit Formative and Summative assessment(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Properties of Water Lab (A1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Protein Project (Database) (B1.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Unit Formative and Summative assessment(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Will test on separate processes not on one Unit Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications of Skills:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Practicum: Investigation of a factor affecting enzyme activity – interpret graphs (C1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Determine reaction rates through experimentation and secondary data for enzyme catalyzed reactions. (C1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Interpret graphs showing the energy required to make and break bonds with substrates (C1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Measure the rate of cellular respiration – what affects cellular respiration rate? (C1.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Thin layer or paper Chromatography-pigmentation of spinach leaves – calculate Rf values – identify pigments by color and value (C1.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Determine the rate of photosynthesis from data for oxygen production and carbon dioxide consumption for varying wavelengths – plot data to make an action spectrum (C1.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Identify phases of mitosis and meiosis using diagrams, viewed with a microscope, and/or micrograph (D2.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Distinction between continuous variables such as skin color and discrete variables such as ABO blood groups – apply measures of central tendency – mean, median, and mode (D3.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Use Box and Whisker plots to display six aspects of data: outliers, minimum, , first quartile, median, third quartile, and maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
MCS IB Biology Year 1 Subject Group Overview – New Syllabus 23-24

<table>
<thead>
<tr>
<th>Unit Name</th>
<th>Cells</th>
<th>Molecular Biology: Structure and Function</th>
<th>Molecular Biology: Cell Energetics</th>
<th>Genetics</th>
<th>Equilibrium</th>
<th>Internal Assessments (IAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water Potential Lab – Plants –Measure changes in tissue length and mass and analyze data to deduce isotonic solute concentrations (standard deviation and standard error/error bars) (D2.3)</td>
<td>Rates of Photosynthesis Lab – limiting factors (C1.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level Specific Differentiation
Marietta City Schools teachers provide specific differentiation of learning experiences for all students. Details for differentiation for learning experiences are included on the district unit planners.

Resources
- Textbook TBD – evaluation of resources
- [IB Biology Guide First Assessment 2025](#)
- IB Biology Schoology Course
- Discovery Education Biology and Chemistry Resources

Additional Resources: Old Syllabus
- Hodder Study and Revision Guide for the IB Diploma
- Hodder IA Internal Assessment for Biology

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.