Marietta City Schools
2023–2024 District Unit Planner

<table>
<thead>
<tr>
<th>Teacher(s)</th>
<th>Subject group and course</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB Biology Y1 – Logue PLC – Logue/Trotter</td>
<td>Group 4/IB Biology Y1 SL MHS Y1 SGO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course part and topic</th>
<th>SL or HL/Year 1 or 2</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1: Cells A2.2, B2.1, B2.2, B2.3, D2.3</td>
<td>SL Y1</td>
<td>Begin August 2023 5 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit description and texts</th>
<th>DP assessment(s) for unit</th>
</tr>
</thead>
</table>
| Cytology is the study of all aspects of a cell (structure and function). As our understanding of the cell increases, our ability to understand all forms of life, from the smallest to the largest organisms, will also increase. Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. (Focus: Light and Electron Microscopy) Conceptual Theme for all Units: Sickle Cell Anemia | • Unit Formative and Summative assessment(s) – Practice Paper 1 and 2 IB style Questions
Applications of Skills:
• Microscopy Skills (A2.2):
• Slide preparation
• Staining
• Measuring sizes using an eyepiece graticule
• Focusing using fine and course adjustments
• Calculating actual size and magnification
• Producing a scale bar and taking photographs
• Identify cell types and structures in light and electron micrographs (A2.2)
• Draw and annotate (functions) diagrams of organelles and cellular structures based on electron micrographs (A2.2)
• Cell Membrane Modeling and Transport Lab (B2.1)
• Surface Area to Volume Ratios/Cell Size Modeling (B2.3)
• Water Potential Lab – Plants –Measure changes in tissue length and mass and analyze data to deduce isotonic solute concentrations (standard deviation and standard error/error bars) (D2.3) |

New IB Biology Guide First Assessment 2025

Topic Abbreviations:

Themes:
A = Unity & Diversity,
B = Form & Function,
C = Interaction & Interdependence,
D = Continuity & Change

Level of Organization:
1 = Molecules, 2 = Cells, 3 = Organisms, 4 = Ecosystems

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
INQUIRY: Establishing the purpose of the unit

Statement of Inquiry:
All living things are composed of cells with similar structures and life cycles.

Phenomenon: With sickle cell disease, an inherited group of disorders, red blood cells contort into a sickle shape. The cells die early, leaving a shortage of healthy red blood cells (sickle cell anemia), and can block blood flow causing pain (sickle cell crisis).

Crosscutting Concepts
- Structure and Function
- Interactions
- Stability and Change
- Patterns

CORE IDEAS
- Cellular Structure: Prokaryotic / Eukaryotic Cells/Animal/Plant Cells - Functions of Life
- Membrane and Membrane Transport
- Organelles and Compartmentalization
- Cell Specialization
- Water Potential

SEP
- Asking Questions and Defining Problems
- Developing & Using Models
- Constructing Explanations
- Carrying Out Investigations

ACTION: teaching and learning through inquiry

<table>
<thead>
<tr>
<th>Content/skills/concepts—essential understandings</th>
<th>Learning process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Themes: A = Unity & Diversity, B = Form & Function, C = Interaction & Interdependence, D = Continuity & Change</td>
<td></td>
</tr>
<tr>
<td>Level of Organization: 1 = Molecules, 2 = Cells, 3 = Organisms, 4 = Ecosystems</td>
<td></td>
</tr>
<tr>
<td>GQ - Guiding Questions</td>
<td></td>
</tr>
<tr>
<td>NOS - Nature of Science</td>
<td></td>
</tr>
</tbody>
</table>

Check the boxes for any pedagogical approaches used during the unit. Aim for a variety of approaches to help facilitate learning.

Published: August, 2023
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
<table>
<thead>
<tr>
<th>AOS - Application of Skills</th>
<th>Learning experiences and strategies/planning for self-supporting learning:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQ - Linking Question</td>
<td>● Socratic Seminar</td>
</tr>
<tr>
<td></td>
<td>● Small Group/Pair Work</td>
</tr>
<tr>
<td></td>
<td>● PowerPoint Lecture Notes</td>
</tr>
<tr>
<td></td>
<td>● Individual Presentations</td>
</tr>
<tr>
<td></td>
<td>● Group Presentations</td>
</tr>
<tr>
<td></td>
<td>● Student Lecture/Leading the class</td>
</tr>
<tr>
<td></td>
<td>● Interdisciplinary Learning</td>
</tr>
<tr>
<td></td>
<td>● Guided and Student Designed Labs and Explorations</td>
</tr>
<tr>
<td>A2.2, B2.1, B2.2, B2.3, D2.3</td>
<td>Modeling, Think/Pair/Share, CER, Writing Prompts, Videos, etc.</td>
</tr>
<tr>
<td>Students will know the following content/Students will grasp the following concepts:</td>
<td>Accommodations:</td>
</tr>
<tr>
<td>A2.2 Cell Structure (Unity and Diversity - Cells)</td>
<td>● SWD/504 – Accommodations Provided</td>
</tr>
<tr>
<td>GQ -</td>
<td>● ELL – Reading & Vocabulary Support</td>
</tr>
<tr>
<td></td>
<td>● Intervention Support</td>
</tr>
<tr>
<td>Guidance:</td>
<td>● Extensions – Enrichment Tasks and Project</td>
</tr>
<tr>
<td>A2.2.1—Cells as the basic structural unit of all living organisms</td>
<td>Assessment Objectives:</td>
</tr>
<tr>
<td>NOS: Students should be aware that deductive reason can be used to generate predictions from theories. Based on cell theory, a newly discovered organism can be predicted to consist of one or more cells.</td>
<td>The assessment objectives for biology reflect those parts of the aims that will be formally assessed either internally or externally. It is the intention of</td>
</tr>
<tr>
<td>A2.2.2—Microscopy skills</td>
<td>Published: Month, Year</td>
</tr>
<tr>
<td>AOS: Students should have experience of making temporary mounts of cells and tissues, staining, measuring sizes using an eyepiece graticule, focusing with coarse and fine adjustments, calculating actual size and magnification, producing a scale bar and taking photographs.</td>
<td>Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.</td>
</tr>
<tr>
<td>NOS: Students should appreciate that measurement using instruments is a form of quantitative observation.</td>
<td></td>
</tr>
<tr>
<td>A2.2.3—Developments in microscopy</td>
<td></td>
</tr>
<tr>
<td>Include the advantages of electron microscopy, freeze fracture, cryogenic electron microscopy, and the use of fluorescent stains and immunofluorescence in light microscopy.</td>
<td></td>
</tr>
<tr>
<td>A2.2.4—Structures common to cells in all living organisms</td>
<td></td>
</tr>
<tr>
<td>Typical cells have DNA as genetic material and a cytoplasm composed mainly of water, which is enclosed by a plasma membrane composed of lipids. Students should understand the reasons for</td>
<td></td>
</tr>
</tbody>
</table>

Published: Month, Year

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
these structures.

A2.2.5—Prokaryote cell structure
Include these cell components: cell wall, plasma membrane, cytoplasm, naked DNA in a loop and 70S ribosomes. The type of prokaryotic cell structure required is that of Gram-positive eubacteria such as Bacillus and Staphylococcus. Students should appreciate that prokaryote cell structure varies. However, students are not required to know details of the variations such as the lack of cell walls in phytoplasmas and mycoplasmas.

A2.2.6—Eukaryote cell structure
Students should be familiar with features common to eukaryote cells: a plasma membrane enclosing a compartmentalized cytoplasm with 80S ribosomes; a nucleus with chromosomes made of DNA bound to histones, contained in a double membrane with pores; membrane-bound cytoplasmic organelles including mitochondria, endoplasmic reticulum, Golgi apparatus and a variety of vesicles or vacuoles including lysosomes; and a cytoskeleton of microtubules and microfilaments.

A2.2.7—Processes of life in unicellular organisms
Include these functions: homeostasis, metabolism, nutrition, movement, excretion, growth, response to stimuli and reproduction.

A2.2.8—Differences in eukaryotic cell structure between animals, fungi, and plants
Include presence and composition of cell walls, differences in size and function of vacuoles, presence of chloroplasts and other plastids, and presence of centrioles, cilia, and flagella.

A2.2.9—Atypical cell structure in eukaryotes
Use numbers of nuclei to illustrate one type of atypical cell structure in aseptate fungal hyphae, skeletal muscle, red blood cells and phloem sieve tube elements.

A2.2.10—Cell types and cell structures viewed in light and electron micrographs.

AOS: Students should be able to identify cells in light and electron micrographs as prokaryote, plant, or animal. In electron micrographs, students should be able to identify these structures: nucleoid region, prokaryotic cell wall, nucleus, mitochondrion, chloroplast, sap vacuole, this course that students can fulfil the following assessment objectives.

1. Demonstrate knowledge of:
 A. terminology, facts, and concepts
 B. skills, techniques, and methodologies.

2. Understand and apply knowledge of:
 A. terminology and concepts
 B. skills, techniques, and methodologies.

3. Analyze, evaluate, and synthesize:
 A. experimental procedures
 B. primary and secondary data
 C. trends, patterns, and predictions.

4. Demonstrate the application of skills necessary to carry out insightful and ethical investigations.

Published: Month, Year

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
Golgi apparatus, rough and smooth endoplasmic reticulum, chromosomes, ribosomes, cell wall, plasma membrane and microvilli.

A2.2.11—Drawing and annotation based on electron micrographs.

AOS: Students should be able to draw and annotate diagrams of organelles (nucleus, mitochondria, chloroplasts, sap vacuole, Golgi apparatus, rough and smooth endoplasmic reticulum, and chromosomes) as well as other cell structures (cell wall, plasma membrane, secretory vesicles, and microvilli) shown in electron micrographs. Students are required to include the functions in their annotations.

LQ - What explains the use of certain molecular building blocks in all living cells?

B2.1 Membranes and Membrane Transport (Form and Function - Cells)

GQ -

- How do molecules of lipid and protein assemble into biological membranes?
- What determines whether a substance can pass through a biological membrane?

Guidance:

B2.1.1—Lipid bilayers as the basis of cell membranes
Phospholipids and other amphipathic lipids naturally form continuous sheet-like bilayers in water.

B2.1.2—Lipid bilayers as barriers
Students should understand that the hydrophobic hydrocarbon chains that form the core of a membrane have low permeability to large molecules and hydrophilic particles, including ions and polar molecules, so membranes function as effective barriers between aqueous solutions.

B2.1.3—Simple diffusion across membranes
Use movement of oxygen and carbon dioxide molecules between phospholipids as an example of simple diffusion across membranes.

B2.1.4—Integral and peripheral proteins in membranes
Emphasize that membrane proteins have diverse structures, locations, and functions. Integral proteins are embedded in one or both lipid layers of a membrane. Peripheral proteins are attached

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
to one or another surface of the bilayer.

B2.1.5—Movement of water molecules across membranes by osmosis and the role of aquaporins
Include an explanation in terms of random movement of particles, impermeability of membranes to solutes and differences in solute concentration.

B2.1.6—Channel proteins for facilitated diffusion
Students should understand how the structure of channel proteins makes membranes selectively permeable by allowing specific ions to diffuse through when channels are open but not when they are closed.

B2.1.7—Pump proteins for active transport
Students should appreciate that pumps use energy from adenosine triphosphate (ATP) to transfer specific particles across membranes and therefore that they can move particles against a concentration gradient.

B2.1.8—Selectivity in membrane permeability
Facilitated diffusion and active transport allow selective permeability in membranes. Permeability by simple diffusion is not selective and depends only on the size and hydrophilic or hydrophobic properties of particles.

B.2.1.9—Structure and function of glycoproteins and glycolipids
Limit to carbohydrate structures linked to proteins or lipids in membranes, location of carbohydrates on the extracellular side of membranes, and roles in cell adhesion and cell recognition.

B2.1.10—Fluid mosaic model of membrane structure
Students should be able to draw a two-dimensional representation of the model and include peripheral and integral proteins, glycoproteins, phospholipids, and cholesterol. They should also be able to indicate hydrophobic and hydrophilic regions.

LQ -
- What processes depend on active transport in biological systems?
- What are the roles of cell membranes in the interaction of a cell with its environment?

B2.2 Organelles and Compartmentalization (Form and Function - Cells)

GQ-
- How are organelles in cells adapted to their functions?
- What are the advantages of compartmentalization in cells?

Guidance:
B2.2.1—Organelles as discrete subunits of cells that are adapted to perform specific functions
Students should understand that the cell wall, cytoskeleton and cytoplasm are not considered organelles, and that nuclei, vesicles, ribosomes and the plasma membrane are.

NOS: Students should recognize that progress in science often follows the development of new techniques. For example, study of the function of individual organelles became possible when ultracentrifuges were invented and methods of using them for cell fractionation had been developed.

B2.2.2—Advantage of the separation of the nucleus and cytoplasm into separate compartments
Limit to separation of the activities of gene transcription and translation—post-transcriptional modification of mRNA can happen before the mRNA meets ribosomes in the cytoplasm. In prokaryotes this is not possible that mRNA may immediately meet ribosomes.

B2.2.3—Advantages of compartmentalization in the cytoplasm of cells
Include concentration of metabolites and enzymes and the separation of incompatible biochemical processes. Include lysosomes and phagocytic vacuoles as examples.

LQ -
- What are examples of structure–function correlations at each level of biological organization?
- What separation techniques are used by biologists?

B2.3 Cell Specialization (Form and Function - Cells)

GQ-
- What are the roles of stem cells in multicellular organisms?
- How are differentiated cells adapted to their specialized functions?

Guidance:

B2.3.1—Production of unspecialized cells following fertilization and their development into specialized cells by differentiation

Students should understand the impact of gradients on gene expression within an early-stage embryo.

B2.3.2—Properties of stem cells

Limit to the capacity of cells to divide endlessly and differentiate along different pathways.

B2.3.3—Location and function of stem cell niches in adult humans

Limit to two example locations and the understanding that the stem cell niche can maintain the cells or promote their proliferation and differentiation. Bone marrow and hair follicles are suitable examples.

B2.3.4—Differences between totipotent, pluripotent, and multipotent stem cells

Students should appreciate that cells in early-stage animal embryos are totipotent but soon become pluripotent, whereas stem cells in adult tissue such as bone marrow are multipotent.

B2.3.5—Cell size as an aspect of specialization

Consider the range of cell size in humans including male and female gametes, red and white blood cells, neurons, and striated muscle fibers.

B2.3.6—Surface area-to-volume ratios and constraints on cell size

Students should understand the mathematical ratio between volume and surface area and that exchange of materials across a cell surface depends on its area whereas the need for exchange depends on cell volume.

NOS: Students should recognize that models are simplified versions of complex systems.

In this case, surface-area-to-volume relationship can be modelled using cubes of different side lengths. Although the cubes have a simpler shape than real organisms, scale factors operate in the

Published: Month, Year

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
same way.
LQ -
- What are the advantages of small size and large size in biological systems?
- How do cells become differentiated?

D2.3 Water Potential (Continuity and Change - Cells)

GQ -
- What factors affect the movement of water into or out of cells?
- How do plant and animal cells differ in their regulation of water movement?

Guidance:
D2.3.1—Solvation with water as the solvent
Include hydrogen bond formation between solute and water molecules, and attractions between both positively and negatively charged ions and polar water molecules.

D2.3.2—Water movement from less concentrated to more concentrated solutions
Students should express the direction of movement in terms of solute concentration, not water concentration. Students should use the terms “hypertonic”, “hypotonic” and “isotonic” to compare concentration of solutions.

D2.3.3—Water movement by osmosis into or out of cells
Students should be able to predict the direction of net movement of water if the environment of a cell is hypotonic or hypertonic. They should understand that in an isotonic environment there is dynamic equilibrium rather than no movement of water.

D2.3.4—Changes due to water movement in plant tissue bathed in hypotonic and those bathed in hypertonic solutions

AOS: Students should be able to measure changes in tissue length and mass, and analyze data to deduce isotonic solute concentration. Students should also be able to use standard deviation and standard error to help in the analysis of data. Students are not required to memorize formulae for calculating these statistics. Standard deviation and standard error could be determined for the results of this experiment if there are repeats for each concentration. This

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
would allow the reliability of length and mass measurements to be compared. Standard errors could be shown graphically as error bars.

D2.3.5—Effects of water movement on cells that lack a cell wall
Include swelling and bursting in a hypotonic medium, and shrinkage and crenation in a hypertonic medium. Also include the need for removal of water by contractile vacuoles in freshwater unicellular organisms and the need to maintain isotonic tissue fluid in multicellular organisms to prevent harmful changes.

D2.3.6—Effects of water movement on cells with a cell wall
Include the development of turgor pressure in a hypotonic medium and plasmolysis in a hypertonic medium.

D2.3.7—Medical applications of isotonic solutions
Include intravenous fluids given as part of medical treatment and bathing of organs ready for transplantation as examples.

LQ -
- What variables influence the direction of movement of materials in tissues?
- What are the implications of solubility differences between chemical substances for living organisms?

<table>
<thead>
<tr>
<th>Students will be assessed daily with classwork, discussions, group work, and reflections using a variety of formats with a focus on the applications and skills provided in the syllabus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative assessment:</td>
</tr>
<tr>
<td>Quiz/Test</td>
</tr>
<tr>
<td>Project/Model</td>
</tr>
<tr>
<td>CER/Reflection</td>
</tr>
<tr>
<td>Essay/Writing Assignment</td>
</tr>
</tbody>
</table>

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
Students will be assessed per subtopic and then at the end of the unit to ensure understanding using IB exam style questions, modeling, reflection, lab reports, and writing prompts. The material may be assessed in multiple sections to ensure understanding.

Summative assessment:
- Quiz/Test
- Project/Model
- CER/Reflection
- Essay/Writing Assignment

Students may be aware of many of the concepts within this unit, so building on prior knowledge using scaffolding techniques to aid students in a deeper understanding and extending learning to ensure that students can meet the goals set by the unit.

Differentiation:
- Affirm Identity - build self-esteem
- Value Prior Knowledge
- Scaffold Learning
- Extend Learning

Details: Many concepts may be familiar to the students and others will need more scaffolding and extension.

Approaches to learning (ATL)
Check the boxes for any explicit approaches to learning connections made during the unit. For more information on ATL, please see the guide.

- Thinking
- Social Communication
- Self-management
- Research

Each one will be focused on individually (~2 weeks per ATL)

Details: This unit will provide students with an overview of cellular biology and allow them to explore new horizons within the expanding world of cytology.

Students will need to be able to make connections between structure and function, differentiate between the cell types, and explain how all these components help us understand living things.

Students will learn at the beginning of this course to keep organized notebooks, complete assignments in a timely manner, and learn to use time management to aid them in being successful in the course (self-management).

Since this is the beginning of a new course, the students will have opportunities to get to know each other, me, and the classroom via individual and group assignments.

Published: Month, Year

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
There will be research components embedded into the content to allow students to dig deeper into the content.

<table>
<thead>
<tr>
<th>Language and learning</th>
<th>TOK connections</th>
<th>CAS connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the boxes for any explicit language and learning connections made during the unit. For more information on the IB’s approach to language and learning, please see the guide.</td>
<td>Check the boxes for any explicit TOK connections made during the unit</td>
<td>Check the boxes for any explicit CAS connections. If you checked any of the boxes, provide a brief note in the “details” section explaining how students engaged in CAS for this unit.</td>
</tr>
</tbody>
</table>

Published: Month, Year
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
Activating Background Knowledge
Scaffolding for new learning
Acquisition of new learning through practice
Demonstrating proficiency

Details: Students may be proficient in many of the concepts within this unit so the focus will be on activating background knowledge and providing students opportunities to learn and practice new applications and skills.

Personal and Shared Knowledge
Ways of Knowing
Areas of Knowledge
The Knowledge Framework

Details: Biology is one of the natural sciences, an area of knowledge. The natural sciences can sometimes be placed in false conflict with the arts or religious and indigenous knowledge systems. The natural sciences tend to rely on ways of knowing sense perception, reason, language, memory. There are many examples of discoveries made or inspired by imagination, intuition, and emotion – however these are then rigorously tested and explained using the scientific method (falsification).

Students will have a writing prompt covering the following items:

- There is a difference between the living and the non-living environment. How are we able to know the difference?
- The world that we inhabit is limited by the world that we see. Is there any distinction to be drawn between knowledge claims dependent upon observations made by sense perception and knowledge claims dependent upon observations assisted by technology?
- The explanation of the structure of the plasma membrane has changed over the years as new evidence and ways of analysis have come to light. Under what circumstances is it important to learn about theories that were later discredited?
- Biology is the study of life; yet life is an emergent property. Under what circumstances is systems

Creativity
Activity
Service

Details: Modeling and active participation in the learning process. Creating materials to aid their fellow classmates in understanding a particular concept through peer interaction and team/group activities.
approach productive in biology and under what circumstances is a reductionist approach more appropriate? How do scientists decide between competing approaches?

International Mindedness/Aims:

International Mindedness: (Research/Reflections/Writing)

- Stem cell research has depended on the work of teams of scientists in many countries who share results thereby speeding up the rate of progress. However, national governments are influenced by local, cultural, and religious traditions that impact on the work of scientists and the use of stem cells in therapy.

- Microscopes were invented simultaneously in different parts of the world at a time when information traveled slowly. Modern-day communications have allowed for improvements in the ability to collaborate, enriching scientific endeavors.

- Biologists in laboratories throughout the world are researching the causes and treatment of cancer.

Aims: (Labs/Activities/Student Reflections/CER Activities)

The course enables students, through the overarching theme of the NOS, to:

1. develop conceptual understanding that allows connections to be made between different areas of the subject, and to other DP sciences subjects
2. acquire and apply a body of knowledge, methods, tools, and techniques that characterize science
3. develop the ability to analyze, evaluate and synthesize scientific information and claims
4. develop the ability to approach unfamiliar situations with creativity and resilience
5. design and model solutions to local and global problems in a scientific context
6. develop an appreciation of the possibilities and limitations of science
7. develop technology skills in a scientific context
8. develop the ability to communicate and collaborate effectively
9. develop awareness of the ethical, environmental, economic, cultural, and social impact of science.
Resources

- Textbook TBD – evaluation of resources
- **IB Biology Guide First Assessment 2025**
- IB Biology Schoology Course
- Discovery Education Biology and Chemistry Resources
- Additional Resources: Old Syllabus
 - Hodder Study and Revision Guide for the IB Diploma
 - Hodder IA Internal Assessment for Biology

Stage 3: Reflection—considering the planning, process and impact of the inquiry

<table>
<thead>
<tr>
<th>What worked well</th>
<th>What didn’t work well</th>
<th>Notes/changes/suggestions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the portions of the unit (content, assessment, planning) that were successful</td>
<td>List the portions of the unit (content, assessment, planning) that were not as successful as hoped</td>
<td>List any notes, suggestions, or considerations for the future teaching of this unit</td>
</tr>
</tbody>
</table>
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.