INQUIRY: establishing the purpose of the unit

Transfer Goals

List here one to three big, overarching, long-term goals for this unit. Transfer goals are the major goals that ask students to “transfer” or apply their knowledge, skills, and concepts at the end of the unit under new/different circumstances, and on their own without scaffolding from the teacher.

Phenomenon: A plane can “fly blind” and arrive safely at the correct location by simply using vector coordinates.

Statement of Inquiry: Measurement is a process of detecting an unknown physical quantity by using a standard quantity.

1. Students will derive units for a quantity from SI units.
2. Students will analyze data and propagate uncertainty to fit a scatter plot graph with high and low gradients.
3. Students will add and subtract differing types of vectors to solve problems involving vector components.
ACTION: teaching and learning through inquiry

<table>
<thead>
<tr>
<th>Content / Skills / Concepts - Essential Understandings</th>
<th>Learning Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will know the following content:</td>
<td>Learning experiences and strategies/planning for self-supporting learning:</td>
</tr>
<tr>
<td>● Fundamental and derived SI units</td>
<td>☒ Lecture</td>
</tr>
<tr>
<td>● Scientific notation and metric multipliers</td>
<td>☐ Socratic seminar</td>
</tr>
<tr>
<td>● Significant figures</td>
<td>☒ Small group/pair work</td>
</tr>
<tr>
<td>● Orders of magnitude</td>
<td>☒ PowerPoint lecture/notes</td>
</tr>
<tr>
<td>● Estimation</td>
<td>☒ Individual presentations</td>
</tr>
<tr>
<td>● Random and systematic errors</td>
<td>☐ Group presentations</td>
</tr>
<tr>
<td>● Absolute, fractional and percentage uncertainties</td>
<td>☐ Student lecture/leading</td>
</tr>
<tr>
<td>● Error bars</td>
<td>☐ Interdisciplinary learning</td>
</tr>
<tr>
<td>● Uncertainty of gradient and intercepts</td>
<td>Details:</td>
</tr>
<tr>
<td>● Solving vector problems graphically and algebraically</td>
<td>Students will learn through a combination of presentations, small group work, practice problems, and lab work.</td>
</tr>
<tr>
<td></td>
<td>☒ Other(s): practice problems, lab work</td>
</tr>
</tbody>
</table>

Students will develop the following skills:

- Using SI units in the correct format for all required measurements, final answers to calculations and presentation of raw and processed data
- Using scientific notation and metric multipliers
- Quoting and comparing ratios, values and approximations to the nearest order of magnitude
- Estimating quantities to an appropriate number of significant figures
- Explaining how random and systematic errors can be identified and reduced
- Collecting data that include absolute and/or fractional uncertainties and stating these as an uncertainty range (expressed as: best estimate ± uncertainty range)
- Propagating uncertainties through calculations involving addition, subtraction, multiplication, division and raising to a power
- Determining the uncertainty in gradients and intercepts

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
- Resolution of vectors will be limited to two perpendicular directions
- Problems will be limited to addition/subtraction of vectors and multiplication/division of vectors by scalars

Formative assessment(s):

Paper 1 quizzes at the end of each subtopic.

Summative assessments:

Topic test consisting of questions from P1 and P3

Differentiation:

- Affirm identity - build self-esteem
- Value prior knowledge
- Scaffold learning
- Extend learning

Details:

- **SWD/S04 – Accommodations Provided**
- **ELL – Reading & Vocabulary Support**
- **Intervention Support**
- **Extensions – Enrichment Tasks and Project**

Approaches to Learning (ATL)

Check the boxes for any explicit approaches to learning connections made during the unit. For more information on ATL, please see the guide.

- Thinking
- Social

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
Students will be continuously challenged to develop higher-order thinking skills as they take prior knowledge, combine it with new content, and analyze the data they collected to reach a conclusion.

Students will communicate their findings to their peers in the form of small-group presentations.

Language and Learning
Check the boxes for any explicit language and learning connections made during the unit. For more information on the IB’s approach to language and learning, please see the guide.

| ✓ Activating background knowledge |
| ❏ Scaffolding for new learning |
| ✓ Acquisition of new learning through practice |
| ✓ Demonstrating proficiency |

Details:
Students will collect data using a concept learned in MYP Physics (free fall) for students to then analyze. Students will discuss their margin of error from calculations.

TOK Connections
Check the boxes for any explicit TOK connections made during the unit.

| ❏ Personal and shared knowledge |
| ✓ Ways of knowing |
| ❏ Areas of knowledge |
| ❏ The knowledge framework |

Details:
What has influenced the common language used in science? To what extent does having a common standard approach to measurement facilitate the sharing of knowledge in physics?

CAS Connections
Check the boxes for any explicit CAS connections. If you check any of the boxes, provide a brief note in the “details” section explaining how students engaged in CAS for this unit.

| ❏ Creativity |
| ✓ Activity |
| ❏ Service |

Details:
Students will actively be carrying out experiments involving dropping objects and free fall.

Published: August, 2023
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
Students will complete practice problems

Students will produce a full scatter plot with high and low gradients as demonstration of learning.

Resources

List and attach (if applicable) any resources used in this unit

- Textbooks (see page 1)
- Laboratory resources
- Online notes and videos (Schoology)

REFLECTION: considering the planning, process, and impact of the inquiry

<table>
<thead>
<tr>
<th>What worked well</th>
<th>What didn’t work well</th>
<th>Notes / Changes / Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the portions of the unit (content, assessment, planning) that were successful</td>
<td>List the portions of the unit (content, assessment, planning) that were not as successful as hoped</td>
<td>List any notes, suggestions, or considerations for the future teaching of this unit</td>
</tr>
</tbody>
</table>

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.